gauss - перевод на французский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

gauss - перевод на французский

GERMAN MATHEMATICIAN AND PHYSICIST (1777–1855)
Johann Carl Friedrich Gauss; Karl Gauss; Carl Frederich Gauss; Karl Friedrich Gauss; Carl Gauss; C. F. Gauss; Carl F. Gauss; Carl Friedrich Gauß; Johann Friedrich Karl Gauss; C.F. Gauss; Carl friedrich gauss; Carl Friederich Gauss; C. F. Gauß; Guass; CF Gauss; Karl Friedrich Gauß; Carl Freidrich Gauss; Johann Carl Friedrich Gauß; Carl Gauß; Friedrich gauss; Gauss; Johann Karl Friedrich Gauss; Carolus Fridericus Gauss; Princeps mathematicorum; Religious views of Carl Friedrich Gauss; Gauß, Johann Carl Friedrich; Carl Friedrich Gausz
  • heliotrope]] (background: mathematical signs) and a section of the [[triangulation network]]
  • German 10-[[Deutsche Mark]] [[Banknote]] (1993; discontinued) with formula and graph of normal distribution (background: some Göttingen buildings); portrait as mirror image of the Jensen portrait
  • Lithography by [[Siegfried Bendixen]] (1828)
  • Brunswick]]
  • House of birth in Brunswick (destroyed in World War II)
  • German Research Centre for Geosciences]] in [[Potsdam]]
  • Gauss on his deathbed (1855)
  • [[Copley Medal]] for Gauss (1838)
  • Caricature of Abraham Gotthelf Kästner by Gauss (1795)
  • Carl Friedrich Gauß 1803 by Johann Christian August Schwartz
  • Title page of Gauss' magnum opus, ''[[Disquisitiones Arithmeticae]]''
  • [[Gauss's diary]] entry related to sum of triangular numbers (1796)
  • Portrait of Gauss in Volume II of "''Carl Friedrich Gauss Werke''," 1876
  • Title page of ''Intensitas vis Magneticae Terrestris ad Mensuram Absolutam Revocata''
  • Title page of ''Theoria Motus Corporum Coelestium in sectionibus conicis solem ambientium''
  • Title page to the English Translation of ''Theoria Motus'' by [[Charles Henry Davis]] (1857)
  • Parochial registration]] of Gauss' birth
  • [[Survey marker]] stone in Garlste (now [[Garlstedt]])
  • Old observatory (circa 1800)
  • Albani Cemetery]] in [[Göttingen]], Germany
  • Gauss-Weber monument in Göttingen
  • Gauss' second wife Wilhelmine Waldeck
  • Ludwig Becker]]

gauss         
n. gauss, unit of magnetic force
gausser      
deride, mock
Carl Friedrich Gauss         
Carl Friedrich Gauss (1777-1855), German mathematician and scientist, major contributor to number theory and electromagnetic theory

Определение

Gauss
A name suggested for unit intensity of magnetic field. Sylvanus P. Thomson proposed for its value the intensity of a field of 1E8 C. G. S. electro-magnetic units. J. A. Fleming proposed the strength of field which would develop one volt potential difference in a wire 1E6 centimeters long, moving through such field with a velocity of one centimeter per second. This is one hundred times greater than Thomson's standard. Sir William Thomson suggested the intensity of field produced by a current of one ampere at a distance of one centimeter The gauss is not used to any extent; practical calculations are based on electro-magnetic lines of force.

Википедия

Carl Friedrich Gauss

Johann Carl Friedrich Gauss (; German: Gauß [kaʁl ˈfʁiːdʁɪç ˈɡaʊs] (listen); Latin: Carolus Fridericus Gauss; 30 April 1777 – 23 February 1855) was a German mathematician and physicist who made significant contributions to many fields in mathematics and science. Sometimes referred to as the Princeps mathematicorum (Latin for 'the foremost of mathematicians') and "the greatest mathematician since antiquity", Gauss had an exceptional influence in many fields of mathematics and science; he is ranked among history's most influential mathematicians.

He was a child prodigy in mathematics and completed his magnum opus, Disquisitiones Arithmeticae, at age 21. Gauss attended Collegium Carolinum and the University of Göttingen, where he made several mathematical discoveries. In 1807, he became the director of the astronomical observatory at the University of Göttingen, where he was active in mathematical research. Gauss died of a heart attack on February 23, 1855, in Göttingen.

He had two wives and six children. He had conflicts with his sons over their career choices, as he did not want them to enter mathematics or science, fearing they would not surpass his achievements. Despite being a hard worker, he was not a prolific writer and refused to publish incomplete work. Gauss was known to dislike teaching, but some of his students became influential mathematicians. He supported monarchy and opposed Napoleon. Gauss believed that the act of learning, not possession of knowledge, granted the greatest enjoyment.

Gauss proved the fundamental theorem of algebra which states that every non-constant single-variable polynomial with complex coefficients has at least one complex root. He made important contributions to number theory and developed the theories of binary and ternary quadratic forms. Gauss is also credited with inventing the fast Fourier transform algorithm and was instrumental in the discovery of the dwarf planet Ceres. His work on the motion of planetoids disturbed by large planets led to the introduction of the Gaussian gravitational constant and the method of least squares, which is still used in all sciences to minimize measurement error.

Furthermore, Gauss invented the heliotrope in 1821, magnetometer in 1833, and alongside Wilhelm Eduard Weber, invented the first electromagnetic telegraph in 1833.

Примеры употребления для gauss
1. L‘un se nomme Alexander von Humboldt, naturaliste, l‘autre Carl Gauss, mathématicien.
2. En d‘autres termes, par rapport ŕ la courbe de Gauss normale, les extrémités de la courbe des rentabilités des hedge funds – les queues de distribution sont plus épaisses.
3. Loi normale D‘une mani';re plus technique, la faiblesse du ratio de Sharpe pour mesurer la performance ajustée au risque des hedge funds vient de l‘une des hypoth';ses qui en limitent la portée: la distribution des rentabilités des fonds doit suivre une loi normale, c‘est–ŕ–dire qu‘elle doit dessiner une belle courbe de Gauss, parfaitement symétrique.